当前位置:总结大全 > 教学总结 > 小学总结

小学奥数知识点总结之分数大小的比较十篇

发布时间:2024-10-18 查看人数:21

小学奥数知识点总结之分数大小的比较

第一篇 小学奥数知识点总结之分数大小的比较 400字

分数大小的比较

基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

第二篇 小学奥数知识点总结:逻辑推理 500字

逻辑推理

基本方法简介:

①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如a和b两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

第三篇 小学奥数数列规律填数规律总结 500字

1、顺等差数列,前一个数减去后一个数的差相等。例如:1,3,5,7,9,…

逆等差数列,后一个数减去前一个数的差相等。例如:10,8,6,4,2…;

2、顺等比数列,即前一个数除以后一个数的商相等。例如:2,4,8,16,32…;

逆等比数列,即后一个数除以前一个数的商相等。例如:1024,512,256,128,…;

3、兔子数列,即单数序号的数字与双数序号的数分别形成规律。

例如8,15,10,13,12,11,(14),(9)这里8,10,12,14成规律,15,13,12,11,9成规律;

4、质数数列规律,例如:2,3,5,7,11,(13),(17)....这些数学都为质数;

注意:一般考试只有以下一种情况,而且容易出现到小升初考试,要特别注意。

5、“平方数列”、“立方数列”等,

例如:平方数列:1、4、9、16、27、64、125、…

立方数列:1、8、27、64、81、256、625、…

6、相邻数字差呈现规律。

数字之间差呈现等差数列,例如:1、3、7、13、21、31、43、…

数字之间差呈现等比数列,例如:1、3、7、15、31、63、…

7、多个数字间呈现规律,(本题考查较少)

裴波那契数列,即任意连续两个数字之和等于第三个数字,

例如:1、1、2、3、5、8、13、21、34、…

任意连续三个数字之和等于第四个数字,

例如:1、1、1、3、5、9、17、31、57、105、…

第四篇 小学数学奥数知识点总结:数列求和 400字

数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:

首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用sn表示.

基本思路:等差数列中涉及五个量:a1,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an=a1+(n-1)d;

通项=首项+(项数一1)×公差;

数列和公式:sn,= (a1+an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

第五篇 小学生奥数知识点学习方法总结 700字

当有人问及世界科学家爱因斯坦取得成功的奥秘时,他写下一个有名的公式: ω = x + y + z。ω代表成功,x代表勤奋,y代表正确的方法,z代表少说空话。学习数学也是这样,对学习目的明确,学习态度端正的学生来说,要想少走弯路,提高学习效果的关键是讲究学习方法。

那么怎样学好奥数呢?

1.数学概念的学习方法:

数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,有指明外延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。

下面我归纳出数学概念的学习方法:

⑴阅读概论,记住名称或符号。

⑵背诵定义,掌握特性。

⑶举出正反实例,体会概念反映的范围。

⑷进行练习,准确地判断。

与其它概念进行比较,弄清概念间的关系。

2.数学公式的学习方法:

公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。

我们介绍的数学公式的学习方法是:

⑴书写公式,记住公式中字母间的关系。

⑵懂得公式的来龙去脉,掌握推导过程。

⑶用数字验算公式,在公式具体化过程中体会公式中反映的规律。

⑷将公式进行各种变换,了解其不同的变化形式。

⑸将公式中的字母想象成抽象的框架,达到自如地应用公式。

3.数学定理的学习方法:

一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。

下面我们归纳出数学定理的学习方法:

⑴背诵定理。

⑵分清定理的条件和结论。

⑶理解定理的证明过程。

⑷应用定理证明有关问题。

⑸体会定理与有关定理和概念的内在关系。

第六篇 小学奥数数论问题知识总结:数的整除性规律 750字

数的整除性规律

能被2或5整除的数的特征一个数的末位能被2或5整除,这个数就能被2或5整除

能被3或9整除的数的特征一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24

3|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=27

9|27,则9|372681。

能被4或25整除的数的特征一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,

173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

能被8或125整除的数的特征一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

例如,

32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。

3569824的末三位数为824,8|824,则8|3569824。

214813750的末三位数为750,125|750,则125|214813750。

能被7、11、13整除的数的特征一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。

例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。

又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。

再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。

此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。

例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。

第七篇 小学奥数常考的知识点总结 600字

鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

和差倍问题

和差问题和倍问题差倍问题

已知条件几个数的和与差几个数的和与倍数几个数的差与倍数

公式适用范围已知两个数的和,差,倍数关系

公式①(和-差)÷2=较小数

较小数+差=较大数

和-较小数=较大数

②(和+差)÷2=较大数

较大数-差=较小数

和-较大数=较小数

和÷(倍数+1)=小数

小数×倍数=大数

和-小数=大数

差÷(倍数-1)=小数

小数×倍数=大数

小数+差=大数

关键问题求出同一条件下的

和与差和与倍数差与倍数

植树问题

基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树

基本公式棵数=段数+1

棵距×段数=总长棵数=段数-1

棵距×段数=总长棵数=段数

棵距×段数=总长

关键问题确定所属类型,从而确定棵数与段数的关系

第八篇 小学一、二年级奥数知识点总结 1500字

空间与图形方面

围绕这个教学目标,我们设置了如下内容:如认识简单立体和平面图形,感受平移、旋转、对称等现象,学会描绘物体相对的位置,会按一定的方法来数各种图形,会找到各种图形之间的内在联系,进行图形的分割和拼组,简单的图形周长的计算等。通过这些内容的学习,学生能建立初步的空间观念,为更高年级的几何学习打好基础。具体内容如下:

1、认识立体图形和平面图形:主要让学生认识常见的立体图形和平面图形,了解它们的特点,并能知道它们的组成。

2、图形的计数:在认识图形的基础上我们继续学习怎样计数,主要内容包括数线段、三角形、长方形、小方块,掌握数图形的一般方法,并能数一些较复杂的图形。

3、图形的拼组:这部分内容主要是通过剪、拼的办法来实现各种图形之间形状的变化,培养学生的动手操作能力。在一二年级的秋寒春暑四期都有不同侧重的锻炼。

4、图形的周长:在二年级春季时我们会提前学习图形的周长,让学生理解周长的概念,并能进行简单的计算。

数与代数方面

数与代数在一、二年级的学习中占了很大比重,比如:认识万以内的数、找数的规律、奇数和偶数、速算和巧算、等量代换、简单的排列和组合问题、数的拆分、数字谜、数阵图、简单的周期问题等,通过这些内容的学习让学生初步建立数感,提高计算、估算的能力,开拓思维,培养学生多元化解答的数理逻辑发散思维。具体内容如下:

1、数的认识:主要学习万以内数的认识,包括数的组成,如何把数拆分,如何判断奇数和偶数等。

2、找数的规律:主要内容包括让学生认识简单的等差数列、等比数列,能通过一列数来发现这一列数的规律,并能继续往下填写,还能发现简单数阵的规律。

3、速算和巧算:主要学习凑整法、带符号搬家、减法的巧算、找基准数等方法。

4、数字谜和数阵图:这部分的内容包括巧填算符,会填三四位数加减法算式谜,能通过找简单的重叠数填数阵图。

5、简单的周期问题:这部分将引导学生提前学习有余数的除法,通过有余数除法的计算来解决一些简单的周期问题。

6、另外:我们还会在一年级提前学习100以内进位加减法,在一年级升二年级时提前学习乘除法,整个代数方面我们会和学校教材紧密结合,即巩固基础又提高能力。

解决问题方法

应用类题型的解答可以很好的培养孩子的思维能力,而对于应用类题型解答方法的训练,需要从小培养。在一、二年级的教学中,我们就安排了大量的重要专题内容,如:两到三步应用题、简单的间隔问题(植树问题)、简单的年龄问题、排队与方阵、倍数问题、时间的计算、智力趣题等。通过这些应用题知识的学习,让学生找到一些解决问题的好方法,如枚举法、画图法、假设法等。这些方法的积累对于更高年级的学生极其重要。

应用类题型专题主要内容包括:

1、在二年级秋季提前学习三步计算的应用类题型:让学生掌握解答应用题的一般方法,了解各种不同类型的应用题,如条件多余、重叠问题等。

2、简单的植树问题:主要让学生掌握不同情况下间隔的变化,并能根据不同的间隔情况解答一些简单问题,为三年级的学习奠定基础。从一年级春季的引入到二年级寒假的拓展,层层深入。

3、简单的年龄问题:主要研究年龄差不变的问题。

4、排队与方阵:从一年级开始到二年级我们将从单列排队到方阵问题一一解答。

5、倍数问题:主要学习简单的和差和和倍问题,将在二年级寒假进行重点学习。

6、时间的计算:对时间的认识是学生在低年级比较薄弱的知识点。我们将在一年级秋季和二年级春季分两个层次来学习,前者学习钟表的认识,后者学习怎样计算单位内的时间。

7、数学方法的学习:如通过付钱的方法来学习枚举法,通过鸡兔同笼问题来学习画图法等。

第九篇 小学奥数知识点总结 2900字

一、 计算

1. 四则混合运算繁分数

⑴ 运算顺序

⑵ 分数、小数混合运算技巧

一般而言:

① 加减运算中,能化成有限小数的统一以小数形式;

② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化

⑷繁分数的化简

2. 简便计算

⑴凑整思想

⑵基准数思想

⑶裂项与拆分

⑷提取公因数

⑸商不变性质

⑹改变运算顺序

① 运算定律的综合运用

② 连减的性质

③ 连除的性质

④ 同级运算移项的性质

⑤ 增减括号的性质

⑥ 变式提取公因数

形如:

3. 估算

求某式的整数部分:扩缩法

4. 比较大小

① 通分

a. 通分母

b. 通分子

② 跟'中介'比

③ 利用倒数性质

若 1/c<1/b<1/c,则c>b>a.。

5. 定义新运算

6. 特殊数列求和

运用相关公式

二、 数论

1. 奇偶性问题

奇+奇=偶 奇×奇=奇

奇+偶=奇 奇×偶=偶

偶+偶=偶 偶×偶=偶

2. 位值原则

形如:abc =100a+10b+c

3. 数的整除特征:

整除数特征

2 末尾是0、2、4、6、8

3 各数位上数字的和是3的倍数

5 末尾是0或5

9 各数位上数字的和是9的倍数

11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

4和25 末两位数是4(或25)的倍数

8和125 末三位数是8(或125)的倍数

7、11、13 末三位数与前几位数的差是7(或11或13)的倍数

4. 整除性质

① 如果c|a、c|b,那么c|(a b)。

② 如果bc|a,那么b|a,c|a。

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。

④ 如果c|b,b|a,那么c|a.

⑤ a个连续自然数中必恰有一个数能被a整除。

5. 带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r

6. 分解定理

任何一个大于1的自然数n都可以写成质数的连乘积,即

n= p1 × p2 ×...×pk

7. 约数个数与约数和定理

设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:

n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)

n的所有约数和:(1+p1+p1 +…p1 )(1+p2+p2 +…p2 )…(1+pk+pk +…pk )

8. 同余定理

① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)

②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。

⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质

①平方差: a -b =(a+b)(a-b),其中我们还得注意a+b, a-b同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。

④平方和。

10.孙子定理(中国剩余定理)

11.辗转相除法

12.数论解题的常用方法:

枚举、归纳、反证、构造、配对、估计

三、 几何图形

1. 平面图形

⑴多边形的内角和

n边形的内角和=(n-2)×180°

⑵等积变形(位移、割补)

① 三角形内等底等高的三角形

② 平行线内等底等高的三角形

③ 公共部分的传递性

④ 极值原理(变与不变)

⑶三角形面积与底的正比关系

s1∶s2 =a∶b ;

s1∶s2=s4∶s3 或者s1×s3=s2×s4

⑹差不变原理

知5-2=3,则圆点比方点多3。

⑺隐含条件的等价代换

例如弦图中长短边长的关系。

⑻组合图形的思考方法

① 化整为零

② 先补后去

③ 正反结合

2. 立体图形

⑴规则立体图形的表面积和体积公式

⑵不规则立体图形的表面积

整体观照法

⑶体积的等积变形

①水中浸放物体:v升水=v物

②测啤酒瓶容积:v=v空气+v水

⑷三视图与展开图

最短线路与展开图形状问题

⑸染色问题

几面染色的块数与'芯'、棱长、顶点、面数的关系。

四、 典型应用题

1. 植树问题

①开放型与封闭型

②间隔与株数的关系

2. 方阵问题

外层边长数-2=内层边长数

(外层边长数-1)×4=外周长数

外层边长数2-中空边长数2=实面积数

3. 列车过桥问题

①车长+桥长=速度×时间

②车长甲+车长乙=速度和×相遇时间

③车长甲+车长乙=速度差×追及时间

列车与人或骑车人或另一列车上的司机的相遇及追及问题

车长=速度和×相遇时间

车长=速度差×追及时间

4. 年龄问题

差不变原理

5. 鸡兔同笼

假设法的解题思想

6. 牛吃草问题

原有草量=(牛吃速度-草长速度)×时间

7. 平均数问题

8. 盈亏问题

分析差量关系

9. 和差问题

10. 和倍问题

11. 差倍问题

12. 逆推问题

还原法,从结果入手

13. 代换问题

列表消元法

等价条件代换

五、 行程问题

1. 相遇问题

路程和=速度和×相遇时间

2. 追及问题

路程差=速度差×追及时间

3. 流水行船

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

4. 多次相遇

线型路程: 甲乙共行全程数=相遇次数×2-1

环型路程: 甲乙共行全程数=相遇次数

其中甲共行路程=单在单个全程所行路程×共行全程数

5. 环形跑道

6. 行程问题中正反比例关系的应用

路程一定,速度和时间成反比。

速度一定,路程和时间成正比。

时间一定,路程和速度成正比。

7. 钟面上的追及问题。

① 时针和分针成直线;

② 时针和分针成直角。

8. 结合分数、工程、和差问题的一些类型。

9. 行程问题时常运用'时光倒流'和'假定看成'的思考方法。

六、 计数问题

1. 加法原理:分类枚举

2. 乘法原理:排列组合

3. 容斥原理:

① 总数量=a+b+c-(ab+ac+bc)+abc

② 常用:总数量=a+b-ab

4. 抽屉原理:

至多至少问题

5. 握手问题

在图形计数中应用广泛

① 角、线段、三角形,

② 长方形、梯形、平行四边形

③ 正方形

七、 分数问题

1. 量率对应

2. 以不变量为'1'

3. 利润问题

4. 浓度问题

倒三角原理

例:

5. 工程问题

① 合作问题

② 水池进出水问题

6. 按比例分配

八、 方程解题

1. 等量关系

① 相关联量的表示法

例: 甲 + 乙 =100 甲÷乙=3

x 100-x 3x x

②解方程技巧

恒等变形

2. 二元一次方程组的求解

代入法、消元法

3. 不定方程的分析求解

以系数大者为试值角度

4. 不等方程的分析求解

九、 找规律

⑴周期性问题

① 年月日、星期几问题

② 余数的应用

⑵数列问题

① 等差数列

通项公式 an=a1+(n-1)d

求项数: n=

求和: s=

② 等比数列

求和: s=

③ 裴波那契数列

⑶策略问题

① 抢报30

② 放硬币

⑷最值问题

① 最短线路

a.一个字符阵组的分线读法

b.在格子路线上的最短走法数

② 化问题

a.统筹方法

b.烙饼问题

十、 算式谜

1. 填充型

2. 替代型

3. 填运算符号

4. 横式变竖式

5. 结合数论知识点

十一、 数阵问题

1. 相等和值问题

2. 数列分组

⑴知行列数,求某数

⑵知某数,求行列数

3. 幻方

⑴奇阶幻方问题:

杨辉法 罗伯法

⑵偶阶幻方问题:

双偶阶:对称交换法

单偶阶:同心方阵法

十二、 二进制

1. 二进制计数法

① 二进制位值原则

② 二进制数与十进制数的互相转化

③ 二进制的运算

2. 其它进制(十六进制)

十三、 一笔画

1. 一笔画定理:

⑴一笔画图形中只能有0个或两个奇点;

⑵两个奇点进必须从一个奇点进,另一个奇点出;

2. 哈密尔顿圈与哈密尔顿链

3. 多笔画定理

笔画数=

十四、 逻辑推理

1. 等价条件的转换

2. 列表法

3. 对阵图

竞赛问题,涉及体育比赛常识

十五、 火柴棒问题

1. 移动火柴棒改变图形个数

2. 移动火柴棒改变算式,使之成立

十六、 智力问题

1. 突破思维定势

2. 某些特殊情境问题

十七、 解题方法

(结合杂题的处理) 9. 画图法

1. 代换法 10. 列表法

2. 消元法 11. 排除法

3. 倒推法 12. 染色法

4. 假设法 13. 构造法

5. 反证法 14. 配对法

6. 极值法 15. 列方程

7. 设数法 ⑴方程

8. 整体法 ⑵不定方程

⑶不等方程

第十篇 小学六年级奥数几何初步认识知识点总结 400字

一 、线和角

1. 线

* 直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

* 射线

射线只有一个端点;长度无限。

* 线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

* 平行线

在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。

* 垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

2. 角

(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。

小学奥数知识点总结之分数大小的比较十篇

分数大小的比较基本方法:①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。③基准数法:确定一个标准,使所有的分数都和它进行比较。④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。⑦倍数
推荐度:
点击下载文档文档为doc格式

相关奥数信息

  • 小学奥数知识点总结十篇
  • 小学奥数知识点总结十篇71人关注

    一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。⑶带 ...[更多]